

PRESENCE & TRAINING

Patrick Rucinski, Risk Control Consultant

Lifeguards play a critical role in not only ensuring public safety, but also in mitigating potential property and liability risks for organizations hosting aquatic events or activities. It is essential to maintain safe, code-compliant environments that support lifeguard readiness and reduce risk exposure. Professionally trained staff, well-documented emergency protocols and specific safety measures help safeguard against accidents during special events, protect organizational assets and ensure compliance with all applicable regulations and standards. This article explores the key considerations in lifeguard certification, facility maintenance and event safety planning through the lens of risk mitigation and operational competencies.

Inadequate lifeguard training or staffing significantly increases the risk of accidents, injuries and liability. Without proper coverage and clear procedures, response times suffer, emergency situations escalate and organizations potentially face serious legal and reputational consequences. Below are potential scenarios that highlight negative outcomes when lifeguard readiness and safety protocols are lacking.

- If a swimmer experiences a medical emergency, the only lifeguard on duty may be non-certified and unable to administer proper aid, resulting in severe injury or fatality.
- An overcrowded pool during a special event may lack the required lifeguard-to-swimmer ratio,

- leading to a delayed response when a child in distress goes unnoticed.
- Poorly maintained equipment, combined with lifeguards who are unaware of the protocols for its use, can lead to chaos during an emergency.
- If no clear emergency action plans exist, school staff may not know how to respond in an emergency, which can result in a negative outcome. This may contribute to confusion and delays in contacting emergency services or administering first aid.
- Lifeguards may not be properly briefed on special hazards that exist during special events. These risks could include inflatables, night/morning swims, sporting events or community activities. This creates an increased risk of preventable injuries or incidents.

BEST PRACTICES

To ensure a safe environment for students, staff and visitors, schools must take proactive steps to identify and mitigate potential risks before the academic year begins. Regular facilities inspection and policy/procedural reviews can reduce potential risk exposures and minimize operational disruptions.

- Certification: All lifeguards should hold current certifications in lifeguarding, CPR and first aid.
 Completing recertification courses ensures skills remain sharp and up to date with the latest safety protocols from reputable training services.
- Ratio: Adequate swimmer-to-lifeguard ratios should be maintained. Additional lifeguards may be necessary based on the ability and age of swimmers and the activity/event (i.e., the presence of a diving board/water slide, group swim lessons). A ratio of one lifeguard per 25 swimmers is the common standard for public pools.
- Conflicting Duties of Lifeguards: At least one certified lifeguard, whose sole duty is to protect bathers, must always be present on the swim deck when the pool is in use. While a coach and/or school staff member may possess current lifeguard certification/training, the lifeguard should not engage in other duties (i.e., coaching,

- instructing) while serving in the official capacity/duties of a certified lifeguard.
- Emergency Drills/Safety Audits: Routine drills and facility inspections help staff stay prepared for emergencies and identify potential hazards before they escalate. Monthly audits of safety equipment in conjunction with event-specific walkthroughs should be completed to keep minds sharp and patrons safe.
- Communication: Well-documented emergency action plans (EAPs) ensure all staff know their roles in the event of an emergency. Annual review and adjustment of these policies ensure staff are competent, while minimizing harm and demonstrating organizational diligence.

Proper lifeguard training, facility oversight and event planning are essential components of a comprehensive lifeguarding/risk management program. By prioritizing certifications, maintaining appropriate staffing levels, conducting regular safety audits and establishing clear emergency procedure guidelines, organizations can seek to mitigate the potential risks present during aquatic-based activities and events. An initiative-taking approach not only protects patrons and staff but can safeguard the property and reputation of the organization. Resources available for training materials and certification include The American Red Cross, The American Lifeguard Association and the United States Lifesaving Association.

If your school has an overhead hoist, you will need to use a proper sling with it. A sling is a device that connects your hoist to the load you wish to lift. Slings come in various types, including alloy steel chain, wire rope, metal mesh, and nylon or polyester synthetic webbing. It's important to consider the best selection, use, storage and end-of-life disposal of the sling to maintain safety.

Items to Consider

USE: Not completely understanding your hoist sling while utilizing it will dramatically increase the risk of an injury to yourself or others nearby.

SELECTION: Since slings come in different materials, sizes and intended uses, selecting the correct sling is important so accidents can be avoided.

STORAGE: Adequate storage is important since a failure in this area can damage the sling and result with a failure. When a sling is not stored properly, the next user may be tempted to take a shortcut and use an alternative object in place of that sling.

END-OF-LIFE DISPOSAL: Every sling has an end-of-life date. Improper judgment on when to remove the sling from service and improper disposal could lead to an injury or property damage.

Best Practices

USE: School administration should only permit staff who receive adequate training, including a demonstration of hands-on sling use, to use hoist/sling equipment. Users should be able to select the appropriate sling for the lift, determine the appropriate method to connect the load based on the circumstance and be able to inspect the sling before and after each use. In addition to the manufacturer, you can learn sling use considerations from the Occupational Safety & Health Administration, 29 CFR 1910.184.

of slings available before selecting a sling that is designed and intended for the lift you plan to perform. Nylon synthetic slings are not only cost-efficient but conform to the contours of the load and provide a cushion to the load. These slings are also less likely to slip away from the load as more weight is applied through the lift. Vocational schools, particularly the Automotive and/or Diesel Technology programs and the Machining Technology programs may use nylon synthetic slings—assuming the item lifted is free of sharp edges. Welding Technology instructors may select steel chain, metal mesh or wire rope slings since they are resistant to heat and flame.

STORAGE: The date the sling is placed in service should be documented. It is important to designate one spot for its safe storage. Staff should instruct users to immediately remove the sling from the lifted object after completing the lift and then return the sling to its designated storage spot. When the sling is not put away, it may not be immediately available the next time it is needed.

sling vendor to receive inspection criteria for your specific sling. Use this information to teach all users what to look for in visual inspections, as well as the conditions that would deem the sling to be removed from service. Removing a sling from service means to safely destroy it so nobody can pick it out of the trash and use it.

Hoist slings are a necessary tool for the safe use of your lifting hoist. If your school utilizes hoisting equipment, now is the time to consider the risks and best practices to prevent an injury or property damage.

COMMUNICATIONS SERIES: PART 2

Process & Procedural Safety

By Edgar Boord, Risk Control Consultant

Effective communication can often be the most crucial aspect in enhancing workplace safety and creating a conducive safety culture. In this article, we will look at the benefits of incorporating communication into the various processes and tasks/activities that may pose a risk to employees, students, visitors and property. This may be in the form of a safe operating procedure, establishing communication between multiple parties involved with a process, and other administrative methods for ensuring everyone is on the same page to reduce the possibility of a workplace incident.

The Risks

- A lack of safety hazard awareness (i.e., hot pans in the kitchen).
- A lack of training and information on safe work practices.
- Tasks performed incorrectly with no understanding of risks and necessary safety controls.
- Not communicating crucial notifications to employees responsible for ensuring safety.
- Lack of or untimely communication regarding security concerns or current threats.

The Benefits

Everyone is On the Same Page – Affected individuals are aware of the hazards, what physical and procedural controls are necessary to perform a task, and what is expected of them to ensure the safety of everyone involved.

Timeliness – Many issues can be resolved with timely communication. For instance, setting out a "Wet Floor" sign and notifying responsible personnel to initiate clean-up before a slip and fall occurs.

Training and Safety Awareness – Reinforces safety procedures, incident prevention, hazard identification and proper use/care of personal protective equipment.

Assists in Establishing a Safety Culture -

Employees, administration and safety committees that collaborate and communicate effectively are typically more effective at lowering risks throughout the workplace.

RISK MANAGER 5 FALL 2025

Considerations

- 1. IDENTIFY Identify processes, tasks, equipment, common hazards and any other workplace function that may pose a risk to people and/or property. Some examples include:
 - Loading materials onto a storage loft or operating an electric kiln.
 - Heavy/repetitive lifting, cut and burn risks in the kitchen, spot treatment for snow/ice removal, or the proper organization and storage of chemicals.
 - Timely response to issues such icy conditions or water intrusion (i.e., ceiling leaks, backed up drainage system), or notification of an accident for timely investigations.
- 2. ASSESS Assess for risks and exposures, what or who is at risk, what physical and other safety controls can reduce the risk, as well as identifying all parties that should be included in the communication efforts.
 - Perform a formal job hazard analysis (JHA)
 to identify specific risk exposures, tools/
 equipment/work area involved and body
 parts affected. This allows for effective safety
 controls to be highlighted, and communication
 procedures to be developed.
- 3. DEVELOP & FORMALIZE In addition to the necessary controls and best practices, everyone who is affected, responsible for implementing controls or timely response, or involved, should be accounted for during the development process. Once reviewed and approved, the information should be well communicated to everyone involved or affected.

Examples & Specific Considerations

 Notification to late shift custodial/maintenance personnel when a kiln is in operation or cooling down after school hours. This allows them to perform safety checks and still remain safe when working near the hot kiln.

- Kitchen-related hazards, such as hot pots/pans or walking behind someone with a knife, should be communicated to co-workers in the area.
- Develop a checklist that allows for assigning snow and ice spot check duties to an individual during periods of inclement weather.
- Training and additional safety information for staff with exposure to high-risk work activities (heavy/repetitive lifting, lockout/tagout procedures, proper storage of lab chemicals, etc.).
- In addition to written and verbal communication, signage can assist in communicating a hazard, safety requirement, restricted access area or other safety notification. Signage can be utilized to complement any procedures and requirements (i.e., "Safety Eyewear Required").
- Areas prone to food/drink spills or water on the floor (i.e., cafeterias, restrooms, drink stations) should have multiple "Wet Floor" signs accessible. All district staff should be encouraged to use "Wet Floor" signs and notify the appropriate personnel in a timely manner to reduce potential for an incident.

In addition to formal communication, it can be valuable to establish a frame of mind that supports healthy communication in "one-off" situations. Scenarios that are not always formally accounted for can occur, creating an unsafe condition. Having everyone understand the importance of communicating issues or information in a timely manner is a great tool for maintaining a safe workplace.

In summary, communication is one of the most important factors in enhancing safety in the workplace. From a full formal process with a safe operating procedure, to letting your co-worker know a pan just came off the stove, effective and timely communication is key. Awareness and understanding of hazards, surroundings—as well as how to avoid and prevent an incident—is often the difference between a serious injury and the ability to go home unscathed.

The Importance of Corrective Actions

By Dennis Kane, Senior Risk Control Consultant

To successfully reduce risk, certain systems must be in place. That means establishing processes to identify hazards and a system to eliminate or reduce the risk of the identified hazard before an incident occurs. Without these systems, the risk of loss will remain elevated. The following guide will assist you with these two critical processes.

Typical hazard identification systems are:

Building/Hazard Inspections – Does your organization have a safety committee that performs scheduled inspections of the buildings and grounds? If not, a hazard inspection process will need to be developed and implemented.

Employee Concerns – How do employees report unsafe conditions or behaviors? If you don't have a system in place, one will need to be developed and implemented.

Post Accident Investigations – We know a hazard exists because a loss already occurred. After an incident, the investigation must identify causal factors.

Once a hazard is identified, there must be a system in place to address it. This step involves developing at least one corrective action aimed at reducing the risk. At times, this step can be restricted by time,

financing, labor force—or a combination of these—but if this step is omitted, or minimized, the overall safety program is at risk. Why? Because an accident already occurred, or someone took the time to identify and report a hazardous condition or unsafe behavior; if there is no corrective action, another accident could occur, or that person may not continue to report unsafe conditions or behaviors. Both are system failures that increase the risk of future losses.

Corrective actions should follow the hierarchy of safety controls as described below:

Elimination – The corrective action totally removes the risk of recurrence. Example: Eliminating a task by contracting it out or ceasing use of a certain hazardous chemical/material.

Substitution – The corrective action reduces the risk by substituting for a less hazardous process, task or chemical/material. Examples: Providing equipment to reduce lifting/carrying forces rather than manual lifting or carrying, so the task requires less force or work. Another example would be substituting a less hazardous chemical in place of one that is highly hazardous.

Engineering Controls – The corrective action reduces risk by not allowing the worker to contact the hazard or access the hazardous area. Examples: Guarding of a machine so the hazard area cannot be contacted, or placement of a fence or fixed barrier to reduce access.

Administrative Controls – The corrective action involves management taking action to reduce risk. Examples: Providing training or additional/refresher training, development of safe operating procedures or safety rules, providing additional staff to reduce workloads, and placement of warning signs. Keep in mind, administrative controls will typically require enforcement.

Personal Protective Equipment (PPE) – The corrective action involves management providing personal protective equipment. Examples: Safety glasses, chemical resistant gloves, slip resistant footwear or cut/bite resistant sleeves and padded barriers. Keep in mind, the use of this equipment will require enforcement.

Once the corrective action is chosen, the final, and possibly most crucial step is to track it to completion—otherwise the hazard and risk remain.

Tracking corrective action progress can be accomplished in several ways but those listed below are easy and effective:

- Hopefully, accidents are already being tracked by your organization, typically a function of the safety committee or Human Resources Department. Design an accident log such as a spreadsheet, by employee or incident number. The log should also include the accident date, a brief description of the incident, a description of the corrective action, who is assigned to complete the corrective action and a due date.
 - Track and follow up on the status of the corrective action until it is completed.
- For hazards reported via a work order/request system, if not already available in the system, add a "safety" code to the work category section. That way those receiving the work order/request can quickly identify it as a safety issue and assign it for immediate completion.
 - An ideal system would allow the work orders/ requests to be sorted by complete/incomplete and by code so a report can be generated.
 - An ideal system would also contact the submitter when action has been taken or allow them to be advised of progress.

As described above, systems must be in place to both identify hazards and to correct or minimize them. Doing one without the other will result in a program failure and the hazards will remain in the workplace. A goal should be to complete a minimum of one corrective action for each reported incident or identified hazard. By doing so you will provide a safer workplace for your staff and safer facilities for your students and visitors.

Polar Vortex

PREPAREDNESS

By Derek Neubauer, Senior Risk Control Consultant

A polar vortex is a large, rotating mass of cold air that normally stays near the North Pole. During winter, it can weaken and shift south, bringing arctic air to lower latitudes, including much of the U.S. where extreme cold weather is not typical. These shifts can cause extremely cold temperatures, high winds and dangerous wind chills lasting several days.

RISKS

Frozen and Burst Pipes: Prolonged temperatures below freezing can cause water pipes to freeze, leading them to burst and cause extensive water damage. In areas not commonly prone to freezing temperatures, the depth of buried pipes may also contribute to pipe freezes during prolonged cold weather.

Heating System Strain: HVAC systems must work harder to maintain indoor temperatures, increasing the risk of system failures or breakdowns. Other factors contributing to HVAC system strain include insulating qualities of buildings and the lack of preventative maintenance to HVAC system components.

Roof and Structural Damage: Heavy snow, ice buildup and extreme cold can weaken roofs, cause ice dams and create cracks in building materials.

BEST PRACTICES

During a polar vortex, building systems face extreme stress. Implement the following best practices to help prevent damage and keeps facilities safe and operational:

Monitor and Maintain Heating Systems

- Run heating systems continuously to maintain the normal occupied temperature for the buildings.
- Inspect boilers, furnaces and heat pumps daily for performance and leaks. More importantly, perform preventative maintenance on all systems prior to forecasted extreme weather.
- Ensure vents, ducts and air returns are unobstructed. Open doors to interior rooms/spaces to allow air circulation.
- Ensure filters are changed per the HVAC manufacturer's suggested recommendation.

Protect Plumbing from Freezing

- Keep thermostats consistent day and night, avoid lowering thermostat temperatures to save on energy costs during extreme cold weather. Open cabinet doors under sinks to allow warm air to reach pipes.
- Let faucets drip in cold zones to keep water moving.
- Insulate exposed or exterior wall piping and any piping located within unconditioned spaces such as ceiling plenums and crawlspaces.

Secure Doors, Windows and Seals

- Check and repair weather stripping, door sweeps and window seals.
- Limit use of exterior doors—use designated entry points to maintain internal heat.
- Use vestibules and door curtains where possible to block cold drafts.
- Seal off any opening/penetration through the building envelope.

Manage Snow, Ice and Exterior Hazards

- Regularly remove snow and ice from roofs, walkways and emergency exits.
- Apply ice melt or sand on slippery surfaces.
- Inspect downspouts and gutters to prevent ice dams and water backups.

Prepare for Emergencies

- Test backup generators and emergency lighting systems.
- Stock maintenance areas with pipe repair kits, salt, flashlights and batteries.
- Identify warming areas and shelter zones within the building in case of heating failure.

Conduct Daily Building Checks

- Walk through the entire building, especially vulnerable areas (mechanical rooms, crawlspaces, restrooms) to assess temperature fluctuations, presence of leaks or equipment failures. These walk-throughs should also be scheduled over holiday breaks and weekends.
- Log any temperature drops, cold zones or signs of water intrusion.
- Encourage all staff to report maintenance concerns promptly.

Remote Monitoring of Building Automation System

- If equipped, designated staff should remotely monitor existing conditions/settings within your Building Automation System (BAS). Remote monitoring allows settings to be adjusted if interior temperatures begin to approach freezing and allow staff to be dispatched to troubleshoot and initiate mitigation efforts.
- Designated staff should promptly respond to BAS alerts based on remote monitoring of live data indicating systems are offline or unable to maintain interior temperatures that may lead to pipe bursts.

Freezing temperatures caused by a polar vortex may occur at inopportune times such as when the building is unoccupied after school hours or during extended building closures. Through modifying operational practices and monitoring vital building systems as noted above, buildings have the best chance to remain operational when students and staff return while minimizing property damage.

300 Sterling Parkway, Suite 100 Mechanicsburg, PA 17050 Toll-free 844-480-0709 CMRegent.com

© 2025 Church Mutual Insurance Company, S.I. The information contained in these materials is intended solely to provide general guidance on topics that may be of interest to you. While we have made reasonable efforts to present accurate and reliable information, CM Regent Insurance Company and its affiliates disclaim all liability for any errors or omissions or for any actions you take or fail to take based on these materials. The information provided may not apply to your particular facts or circumstances; therefore, you should seek professional advice prior to relying on any information that may be found in these materials. NAIC # 12356